Design and Implementation of a Microscope Based on Magneto-Optic Effects
2017
- 260Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage260
- Downloads227
- Abstract Views33
Thesis / Dissertation Description
When light passes through a medium that is subjected to a strong magnetic field, its polarization state may change due to magneto-optic effects such as Faraday rotation. An imaging system based on this polarization change is designed and constructed. The imaging system is built around a magnetic pulse field generator and able to detect polarization change of the incident light due to magneto-optic effects. An automated scheme is implemented using LabView. The program is developed to integrate all hardware and conduct multiple measurements automatically to enhance sensitivity. Basic testing measurements are conducted to evaluate the performance of the system. A metal film made of 50nm thick nickel and aluminum layer is tested and preliminary results are presented. Apart from the final design and experimental results, problems about laser imaging, system vibration and an early design using simple concave lens are also discussed. While no system can be universally ideal for all kinds of samples, an attempt is made to discuss ideal samples for imaging and how the performance may be affected by other types of samples. Various possible future improvements are also discussed and prioritized.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know