On Cantor Sets Defined by Generalized Continued Fractions
Vol: 23, Issue: 2
2022
- 1,070Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,070
- Downloads586
- Abstract Views484
Article Description
We study a special class of generalized continuous fractions, both in real and complex settings, and show that in many cases, the set of numbers that can be represented by a continued fraction for that class form a Cantor set. Specifically, we study generalized continued fractions with a fixed absolute value and a variable coefficient sign. We ask the same question in the complex setting, allowing the coefficient's argument to be a multiple of \pi/2. The numerical experiments we conducted showed that in these settings the set of numbers formed by such continued fractions is a Cantor set for large values of the coefficient. Using an iterated function systems construction, we prove that this is true for both real and complex cases. We also observed that in some regimes (for absolute values of the coefficient smaller than two), the set forms a peculiar fractal, and we formulate some questions and conjectures on its properties. We expect that some restrictions on the coefficients of generalized continued fractions should lead to the appearance of Cantorvals (closed bounded sets that have dense interiors but contain no isolated points or intervals) or, in the complex case, two-dimensional analogs of Cantorvals. Our projects bring together topics from number theory, dynamical systems, fractal geometry, and complex analysis. We believe it can serve as a foundation for researchers to build upon in the future.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know