Electricity Market Operations With Massive Renewable Integration: New Designs
2021
- 558Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage558
- Downloads395
- Abstract Views163
Thesis / Dissertation Description
Electricity market has been transitioning from a conventional and deterministic operation to a stochastic operation under the increasing penetration of renewable energy. Industry-level solutions toward the future electricity market operation ask for both accuracy and efficiency while maintaining model interpretability. Hence, reliable stochastic optimization techniques come to the first place for such a complex and dynamic problem.This work starts at proposing a solution strategy for the uncertainty-based power system planning problem, which acts as a preliminary and instructs the electricity market operation. Considering 100% renewable penetration in the future, it analyzes the cost-effectiveness of renewable energy from a long-term point of view. After the uncertainty-based system planning problem is well tackled, we turn our direction to the hierarchical market operation considering the transmission and distribution coordination. We develop a three-stage unit commitment model for the market operation of transmission and distribution coordination under the uncertainties of renewable generation and demand variations. With the study of new electricity market operations, current market protocols should be updated according to the growing variable resources in the power system, especially the ancillary service participation. To better let industry and research communities leverage our works, we develop an flexible software platform for the full-stack electricity market operations including both the day-ahead and real-time operations. Various operation novelties, such as ancillary service provision from variable resources, multi-level energy storage participation, and model updates on the conventional non-spinning reserve, are integrated in the new model, considering the profitability of the variable renewable energy.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know