Automatic tool path generation for the rough machining of dies and molds.
1994
- 186Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage186
- Downloads160
- Abstract Views26
Thesis / Dissertation Description
In this thesis, a prototype knowledge-based system for the rough machining of sculptured surfaces on dies and molds is presented. The system first decomposes a designed part into a number of parallel layers normal to the z-axis and determines the shape of the part at each of these layers. Then, a geometric description of each cutting layer shape including the area-to-dimension ratio, the feasible machining region and the number and size of pockets/islands is produced. Next, the system makes decisions on the size of the cutter, the sequence of cut and the optimal tool path strategy (parallel offset, stock offset, or component offset). Finally, the NC code is generated, the machining of the entire part is simulated, and machining time and cost are calculated. This system can reduce tool path designing time by up to 80% over traditional methods, and testing has shown that it reduces machining time by 10%. To demonstrate this system, two examples are included.Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1994 .M377. Source: Masters Abstracts International, Volume: 33-04, page: 1317. Adviser: Ruxu Du. Thesis (M.Sc.A.)--University of Windsor (Canada), 1994.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know