Analysis of Zero Inflated Over dispersed Count Data Regression Models with Missing Values
2016
- 624Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage624
- Downloads487
- Abstract Views137
Thesis / Dissertation Description
Discrete data in the form of counts arise in many health science disciplines such as biology and epidemiology. The Poisson distribution is the most commonly used distribution for analysing count data. The Poisson distribution has a property that mean and the variance of the distribution are equal to each other. However, in many count data cases this property of the Poisson distribution does not hold as extra dispersion (variation) is observed in the data, and thus Poisson distribution is not an ideal choice for analysing count data in many applications. The presence of extra dispersion in count data is common in many real life situations. To accommodate this extra dispersion situation in count data a well known model is the negative binomial distribution, which is very convenient and common in practice.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know