Development of Optimal Material Extrusion Additive Manufacturing Tool Path Parameters for Minimizing Void Regions Using Contemporary Tool Path Solutions
2018
- 872Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage872
- Downloads691
- Abstract Views181
Thesis / Dissertation Description
A problem with the planning solutions for the additive manufacturing material extrusion process is a lack of optimization strategies to improve upon the standard raster and contour toolpaths. After experimental testing, it was recognized that a component’s strength relationship with respect to the volume of material usage is inconsistent and that failures occurred in regions of voids. From previous studies, it was found that a build orientation in the material extrusion process influences the support material requirements, processing time, surface finish, voids volume, etc. This dissertation aims to identify, minimize, and manage void regions during the toolpath generation, and studies the effects of build orientation on the amount and location of unwanted voids in the finished part. This includes comparing all possible build orientations to minimize voids in each layer, preventing void regions from being stacked in 3D, and avoiding creating an internal chimney. This approach is divided into three phases. Phase I is minimizing voids in each layer, phase II is identifying and managing voids between layers, and the third phase is comparing the total voids in all possible build orientations. Material extrusion processes, with a wide selection of nozzle sizes (0.4 mm to 21 mm), are considered suitable candidates for this solution. To carry out this study, a literature review was performed to understand the influence of the build parameters. Then, an analysis of valid parameter settings to be targeted was performed on a commercial system. The mathematical model is established based on the component geometry and the available build options for a given machine-material configuration. A C++ program has been developed to select a set of standard (available) toolpath parameters to determine the optimal output process variables (bead width, raster angle, and the overlap percentage), managing voids between layers, and compare total voids in all possible build orientations. Case studies are presented to show the merits of this approach. It is found that the entire void area is significantly reduced (~7%) with the phase I, by 5% with the second phase, at least 11% with phase III.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know