Flexural strengthening of reinforced concrete beams with basalt fibre reinforced polymers
2019
- 602Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage602
- Downloads483
- Abstract Views119
Thesis / Dissertation Description
This thesis presents the experimental results of laboratory testing conducted on full-scale concrete beams which were strengthened with Basalt Fibre Reinforced Polymer (BFRP) fabrics.The goal was to determine the viability of using external BFRP fabric reinforcement to strengthen flexurally controlled concrete members in-situ. The use of BFRP as an external strengthening material is compared to other materials such as glass (GFRP) and carbon (CFRP) fabrics which are currently widely accepted strengthening materials. Two parameters were varied during the research: the internal steel reinforcement ratio, and the external BFRP layers, to study the interaction between the two. Using BFRP showed excellent results as a flexural strengthening method. The moment capacity of the strengthened beams was found to increase by up to 79% over the control beam for the yield strength, and by up to 120% over the control for the ultimate strength.The yield deflection of the strengthened beams remained similar to the control beam without much reduction or increase, and the ultimate load deflection was increased by up to 140% over the control specimen. This is a key finding as previous tested discussed in the literature review found that both the yield and ultimate deflections of strengthened beams was greatly reduced when using GFRP and CFRP fabrics. When compared to the applicable Canadian and American FRP design guidelines, it was found that the Canadian code needs to be updated to reflect the same process used to determine the FRP design strain used in the American code. With this update, both codes can accurately predict the strength increase found in these specimens. When strengthening flexural members with BFRP fabrics, the beams exhibit increased load-deflection stiffness. It is recommended to also strengthen the beams shear capacity when flexurally strengthening a concrete member to maintain beam integrity and ductility.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know