Integrated placement and routing of relay nodes for fault-tolerant hierarchical sensor networks
2009
- 49Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage49
- Downloads48
- Abstract Views1
Thesis / Dissertation Description
In two-tiered sensor networks, using higher-powered relay nodes as cluster heads has been shown to lead to further improvements in network performance. Placement of such relay nodes focuses on achieving specified coverage and connectivity requirements with as few relay nodes as possible. Existing placement strategies typically are unaware of energy dissipation due to routing and are not capable of optimizing the routing scheme and placement concurrently.We, in this thesis, propose an integrated integer linear program (ILP) formulation that determines the minimum number of relay nodes, along with their locations and a suitable communication strategy such that the network has a guaranteed lifetime as well as ensuring the pre-specified level of coverage (ks) and connectivity (kr). We also present an intersection based approach for creating the initial set of potential relay node positions, which are used by our ILP, and evaluate its performance under different conditions. Experimental results on networks with hundreds of sensor nodes show that our approach leads to significant improvement over existing energy-unaware placement schemes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know