Fault Diagnosis of Lubrication Decay in Reaction Wheels Using Temperature Estimation and Forecasting via Enhanced Adaptive Particle Filter
2023
- 243Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage243
- Abstract Views122
- Downloads121
Thesis / Dissertation Description
Reaction wheel (RW), the most common Attitude Control Systems (ACS) in satellites, are highly prone to failure. A satellite needs to be oriented in a particular direction to maneuver and accomplish its mission goals; losing the RW can lead to a complete or partial mission failure. Therefore, estimating the remaining useful life (RUL) in long and short spans can be extremely valuable. The short-period prediction allows the satellite's operator to manage and prioritize mission tasks based on the RUL and increases the chances of a total mission failure becoming a partial one. Studies show that lack of proper bearing lubrication and uneven frictional torque distribution, which lead to variation in motor torque, are the leading causes of failure in RWs. Hence, this study aims to develop a three-step prognostic method for longterm RUL estimation of RWs based on the remaining lubricant for the bearing unit and potential fault in the supplementary lubrication system. In the first step of this method, the temperature of the lubricants is estimated as the non-measurable state of the system, using a proposed Adaptive particle filter (APF) with an-gular velocity and motor current of RW as the available measurements. In the second step, the estimated lubricant's temperature and amount of injected lubrication in the bearing alongside the lubrication degradation model are fed to a two-step Particle Filter (PF) for online model parameter estimation. In the last step, the performance of the proposed prognostics method is evaluated by predicting the RW's RUL under two fault scenarios, including excessive loss of lubrication and insufficient injection of lubrication. The results show promising performance for the proposed scheme with accuracy in estimation of degradation model's parameters around 2–3% of root mean squared percentage error (RMSPE) and prediction of RUL around 0.1- 4% percentage error.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know