Hardware in the Loop Demonstration of Battery Surface Temperature Prediction
2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2022, Page: 1-6
2022
- 2Usage
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2
- Abstract Views2
- Captures9
- Readers9
Conference Paper Description
Long-term continuous operation or high-rate charging and discharging processes generate a lot of heat in lithium-ion batteries. This can cause a rise in battery temperature, resulting in battery performance deterioration. The battery thermal management system (BTMS) increases the battery performance by keeping the temperature within an optimum range. In this study, a hardware-in-the-loop (HIL) system is developed for the verification of the designed temperature prediction algorithm. Since it is important to evaluate the performance of developed algorithms in real-world applications. In this work, a platform is developed to collect data from all sensors, store it on a computer, and then feed it into a temperature prediction algorithm. The MATLAB environment is used to compute and predict the surface temperature of the battery. To test the performance of real-time temperature prediction, normalized mean absolute error (NMAE) was chosen as the error metric. The demonstration of real-time temperature prediction is shown in a discharge test with 2C-rate and NMAE is computed as 1.7352 %.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85137997084&origin=inward; http://dx.doi.org/10.1109/eeeic/icpseurope54979.2022.9854750; https://ieeexplore.ieee.org/document/9854750/; https://scholar.uwindsor.ca/mechanicalengpub/35; https://scholar.uwindsor.ca/cgi/viewcontent.cgi?article=1045&context=mechanicalengpub
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know