Solar thermal decoupled water electrolysis process II: An extended investigation of the anodic electrochemical reaction
Chemical Engineering Science, Vol: 181
2018
- 14Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage14
- Abstract Views14
Article Description
We examined the kinetic and transport processes involved in the production of H2 from water with Co2+ as the electroactive species being oxidized at a Ni electrode in 40 wt% KOH at 318 K. The relevant transport parameters such as electrochemical rate constants, transfer coefficients, diffusion coefficients, and adsorption coefficients were estimated from a combination of cyclic voltammetry experiments and numerical modeling. Fourteen parameters characterize the electrochemical reaction on a clean electrode, with the Butler-Volmer equation describing the electron transfer step to solution and to adsorption bound electroactive species. A Frumkin Isothermdescribes the thermodynamics of the adsorption process. Experimentally realized anodic current densities at cell voltages below 1.23 V were circa 1 mA cm−2, a hydrogen production level far too low for commercial viability of the solar thermal decoupled water electrolysis process. However, our 3-D finite element model of the electrochemical cell operating at 318 K, suggests that current densities approaching 20 mA cm−2 can be reached in a cell with forced convection and a solvent that increases the solubility of CoO by a factor of 10 above that for KOH. Finally, the current density calculations from the perspective of industrial viability suggest producing porous metal anodes for which the actual surface area is 10–100 times larger than the electrode’s planar area.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know