Identifying and Implementing the Underlying Operators for Nuclear Magnetic Resonance based Metabolomics Data Analysis
Third International Conference on Bioinformatics and Computational Biology, Page: 205-209
2011
- 2Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2
- Abstract Views2
Article Description
The science of metabolomics is a relatively young field that requires intensive signal processing and multivariate data analysis for interpretation of experimental results. The lack of integration and standardization for metabolomics compounded by the complexity of the experimental data has lead to a fragmented research community. While efforts have been undertaken to approach these problems, the efforts to develop a set of standards for reporting processing and analysis procedures has stalled.In this paper, we propose a set of fundamental operators for nuclear magnetic resonance(NMR) based metabolomics. These operators are implementation independent, and can be used to easily and precisely describe the processing and analysis steps that led to research conclusions. This formalization can facilitate inter-lab communication, and due to its simplicity, it is easily adapted by the metabolomics community. A Domain Specific Language (DSL) is also included to demonstrate an implementation of these operators. The DSL is simple, convenient for a domain scientist, and can be easily transformed into multiple target platforms.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know