Regular Expression Synthesis for BLAST Two-Hit Filtering
2016
- 391Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage391
- Downloads356
- Abstract Views35
Interview Description
Genomic databases are exhibiting a growth rate that is outpacing Moore's Law, which has made database search algorithms a popular application for use on emerging processor technologies. NCBI BLAST is the standard tool for performing searches against these databases, which operates by transforming each database query into a filter that is subsequently applied to the database. This requires a database scan for every query, fundamentally limiting its performance by I/O bandwidth. In this dissertation we present a functionally-equivalent variation on the NCBI BLAST algorithm that maps more suitably to an FPGA implementation. This variation of the algorithm attempts to reduce the I/O requirement by leveraging FPGA-specific capabilities, such as high pattern matching throughput and explicit on-chip memory structure and allocation. Our algorithm transforms the database—not the query—into a filter that is stored as a hierarchical arrangement of three tables, the first two of which are stored on-chip and the third off-chip. Our results show that it is possible to achieve speedups of up to 8x based on the relative reduction in I/O of our approach versus that of NCBI BLAST, with a minimal impact on sensitivity. More importantly, the performance relative to NCBI BLAST improves with larger databases and query workload sizes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know