On Slowly Rotating Supercompact Schwarzschild Stars
2017
- 778Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage778
- Downloads635
- Abstract Views143
Interview Description
In this Ph.D thesis, I will present results concerning to my doctoral research project submitted to the Department of Physics and Astronomy at the University of South Carolina. The thesis belongs to the area of Theoretical Physics, particularly, in the framework of Einstein’s Theory of General Relativity.The project is the study of integral and surface properties of slowly rotating homogeneous masses in the gravastar limit R ! Rs, where Rs is the Schwarzschild radius. For this purpose we followed the perturbative method proposed by Hartle in 1967. In this model, the relativistic equations of structure for a slowly rotating star were derived at second order in the angular velocity . An interesting, and educational, application of this model was investigated by Chandrasekhar and Miller. In their approach, they solved numerically the structure equations of a homogeneous star (constant energy density) up to the Buchdahl bound (9/8)Rs. Based on this work, our objective was to investigate the interesting region below the Buchdahl bound Rs < R < (9/8)Rs, which has not been studied previously in the literature. Our results were astonishing. We found that the surface properties and quadrupole mass moment approach the values corresponding to those of the Kerr metric when expanded at second order in angular momentum. This remarkable result provides a long sought solution to the problem of the source of rotation in the Kerr spacetime.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know