Engineering a Switchable Nanosystem for Customizable Therapeutics
2020
- 136Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage136
- Abstract Views78
- Downloads58
Thesis / Dissertation Description
Exosomes are nanovesicles that are naturally secreted by mammalian cells in vivo for intercellular communications. Due to their inherent targeting ability, exosomes have a potential for therapeutic applications. However, due to their physiological derivation, the isolation of engineered exosomes has been a major obstacle to their therapeutic application, and successful disease-targeting has been difficult to control. Recently, we have developed an exosome technology that borrows from switchable Chimeric Antigen Receptor (sCAR) T-Cell Therapy and Strep-tag engineering to overcome these obstacles. Here, we describe the development of a de novo method to produce genetically modified exosomes with switchable targeting ability and easier isolation capacity. We have elected to fuse an exosome-anchoring protein, vesicular stomatitis viral glycoprotein (VSVG), with a peptide neoepitope (PNE) short-chain variable fragment (scFV) and a StrepTag region. The PNE-scFV will allow for switchable targeting while the Strep-tag will allow for enhanced purification abilities. We have shown that living human cells can produce the engineered exosomes, and we have isolated the engineered exosomes from producer cells. Post isolation, we have characterized these modified exosomes, and we have begun testing the functionality of the PNE scFV and StrepTag regions. This technology will broaden application of exosomes in a therapeutic setting.
Bibliographic Details
Santa Clara : Santa Clara University, 2020.
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know