Circuit Modeling of High-Frequency Electrical Conduction in Carbon Nanofibers
2009
- 5Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage5
- Abstract Views5
Article Description
We show that the simplest possible circuit model of high-frequency electrical conduction in carbon nanofibers from 0.1 to 50 GHz is a frequency-independent resistor in parallel with a frequency-independent capacitor. The resistance is experimentally determined and represents the total dc resistance of the nanofiber and its contacts with the electrodes. The capacitance is obtained as a free parameter and has not been previously observed. The experimental method utilizes a ground-signal-ground test structure whose two-port scattering parameters (S-parameters) can be described to within plusmn0.5 dB and plusmn2deg using a simple lumped-element circuit model. The nanostructure is placed in the signal path of the test structure, and its equivalent circuit is deduced by determining what additional elements must be added to the test structure circuit model to reproduce the resulting changes in the S-parameters. This methodology is applicable to nanowires and nanotubes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know