PlumX Metrics
Embed PlumX Metrics

Circuit Modeling of High-Frequency Electrical Conduction in Carbon Nanofibers

2009
  • 0
    Citations
  • 5
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

We show that the simplest possible circuit model of high-frequency electrical conduction in carbon nanofibers from 0.1 to 50 GHz is a frequency-independent resistor in parallel with a frequency-independent capacitor. The resistance is experimentally determined and represents the total dc resistance of the nanofiber and its contacts with the electrodes. The capacitance is obtained as a free parameter and has not been previously observed. The experimental method utilizes a ground-signal-ground test structure whose two-port scattering parameters (S-parameters) can be described to within plusmn0.5 dB and plusmn2deg using a simple lumped-element circuit model. The nanostructure is placed in the signal path of the test structure, and its equivalent circuit is deduced by determining what additional elements must be added to the test structure circuit model to reproduce the resulting changes in the S-parameters. This methodology is applicable to nanowires and nanotubes.

Bibliographic Details

Francisco R. Madriz; John R. Jameson; Shoba Krishnan; Xuhui Sun; Cary Y. Yang

IEEE

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know