Molecular basis for the inhibition of HMGA1 proteins by distamycin A
Vol: 50, Issue: 38
2011
- 26Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage26
- Abstract Views26
Artifact Description
The molecular mechanism for the displacement of HMGA1 proteins from DNA is integral to disrupting their cellular function, which is linked to many metastatic cancers. Chemical shift and NOESY NMR experiments provide structural evidence for the displacement of an AT hook peptide (DNA binding motif of HMGA1 proteins) by both monomeric and dimeric distamycin. However, the displaced AT hook alters distamycin binding by weakening the distamycin:DNA complex, while slowing monomeric distamycin dissociation when AT hook is in excess. The central role of the AT hook was evaluated by monitoring full-length HMGA1a protein binding using fluorescence anisotropy. HMGA1a was effectively displaced by distamycin, but the cooperative binding exhibited by distamycin was eliminated by displaced HMGA1a. Additionally, these studies indicate that HMGA1a is displaced from the DNA by 1 equiv of distamycin, suggesting the ability to develop therapeutics that take advantage of the positively cooperative nature of HMGA1a binding.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know