PlumX Metrics
Embed PlumX Metrics

Synthesis and evaluation of an intercalator-polyamide hairpin designed to target the inverted CCAAT box 2 in the topoisomerase IIα promoter

Vol: 7, Issue: 11
2006
  • 0
    Citations
  • 10
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Artifact Description

The synthesis and DNA-binding properties of a novel naphthalimide-polyamide hairpin (3) designed to target the inverted CCAAT box 2 (ICB2) site on the topoisomerase IIalpha (topoIIalpha) promoter are described. The polyamide component of 3 was derived from the minor-groove binder, 2, and tailored to bind to the 5'-TTGGT sequence found in and flanking ICB2. The propensity of mitonafide 4 to intercalate between G-C base pairs was exploited by the incorporation of a naphthalimide moiety at the N terminus of 2. Hybrid 3 targeted 5'-CGATTGGT and covered eight contiguous base pairs, which included the underlined ICB2 site. DNase I footprinting analysis with the topoIIalpha promoter sequence demonstrated that 3 bound selectively to the ICB2 and ICB3 sites. Thermal-denaturation studies confirmed these results, and the highest degree of stabilization was found for ICB2 and -3 in preference to ICB1 (4.1, 4.6, and 0.6 degrees C, respectively). CD studies confirmed minor-groove binding and suggested a 1:1 binding stoichiometry. Emission-titration experiments established intercalative binding. Surface plasmon resonance results showed strong binding to ICB2 (2.5x10(7) M(-1)) with no observable binding to ICB1. Furthermore, the binding constant of 3 to ICB2 was larger than that of the parent polyamide 2. The increased binding affinity was primarily due to a reduction in the dissociation-rate constant of the polyamide-DNA complex, which can be attributed to the N-terminal naphthalimide moiety. In addition, the binding site of 3 was larger than that of 2, which innately improved sequence selectivity. We conclude that the polyamide-naphthalimide 3 selectively binds to the ICB2 site by simultaneous intercalation and minor-groove binding, and warrants further investigation as a model compound for the regulation of topoIIalpha gene expression.

Bibliographic Details

Lloyd V. Flores; Andrew M. Staples; Hilary Mackay; Cameron M. Howard; Peter B. Uthe; Jim S. Sexton; Karen L. Buchmueller; W. D. Wilson; Caroline O'Hare; Jerome Kluza; Daniel Hochhauser; John A. Hartley; Moses Lee

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know