The predictive value of international classification of disease codes for chronic hepatitis c virus infection surveillance: The utility and limitations of electronic health records
Popul Health Manag., Vol: 22, Issue: 2, Page: 110-115
2018
- 18Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage18
- Abstract Views18
Article Description
Surveillance of chronic hepatitis C virus (HCV) cases faces limitations that result in delays and underreporting. With increasing use of electronic health records (EHRs), the authors evaluated the predictive value of using International Classification of Diseases, Ninth Revision (ICD-9) codes to identify chronic HCV cases from EHR data. Longitudinal EHR data from 4 health care systems during 2006-2012 were evaluated. Using chart abstraction and review to confirm chronic HCV cases (“gold standard” definition), the authors calculated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 2 case definitions: (1) >/=2 ICD-9 codes separated by >/= 6 months and (2) >/=1 positive HCV RNA (ribonucleic acid) test. Among 2,718,995 patients, 20,779 (0.8%) with ICD-9 codes indicating a likely diagnosis of chronic HCV infection were identified; 13,595 (65.4%) of these were randomly selected for review. Case definition 1 (>/= 2 ICD-9 codes separated by >/= 6 months) had 70.3% sensitivity, 91.9% PPV, 99.9% specificity, and 99.9% NPV while case definition 2 (>/= 1 positive HCV RNA test) had 74.1% sensitivity, 97.4% PPV, 99.9% specificity, and 99.9% NPV. The predictive values of these alternate EHR-derived ICD-9 code-based case definitions suggest that these measures may be useful in capturing the burden of diagnosed chronic HCV infections. Their use can augment current chronic HCV case surveillance efforts; however, their accuracy may vary by length of observation and completeness of EHR data.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know