Applicability of Drug Response Metrics for Cancer Studies Using Biomaterials
Philosophical Transactions of the Royal Society, Vol: 3, Issue: 3
2019
- 46Citations
- 391Usage
- 167Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations46
- Citation Indexes46
- 46
- CrossRef9
- Usage391
- Downloads376
- Abstract Views15
- Captures167
- Readers167
- 167
Article Description
Bioengineers have built models of the tumour microenvironment (TME) in which to study cell–cell interactions, mechanisms of cancer growth and metastasis, and to test new therapies. These models allow researchers to culture cells in conditions that include features of the in vivo TME implicated in regulating cancer progression, such as extracellular matrix (ECM) stiffness, integrin binding to the ECM, immune and stromal cells, growth factor and cytokine depots, and a three-dimensional geometry more representative of the in vivo TME than tissue culture polystyrene (TCPS). These biomaterials could be particularly useful for drug screening applications to make better predictions of efficacy, offering better translation to preclinical models and clinical trials. However, it can be challenging to compare drug response reports across different biomaterial platforms in the current literature. This is, in part, a result of inconsistent reporting and improper use of drug response metrics, and vast differences in cell growth rates across a large variety of biomaterial designs. This study attempts to clarify the definitions of drug response measurements used in the field, and presents examples in which these measurements can and cannot be applied. We suggest as best practice to measure the growth rate of cells in the absence of drug, and follow our ‘decision tree’ when reporting drug response metrics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know