The Complexity of the List Partition Problem for Graphs
2007
- 709Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage709
- Downloads680
- Abstract Views29
Article Description
The k-partition problem is as follows: Given a graph G and a positive integer k, partition the vertices of G into at most k parts A1, A2, . . . , Ak, where it may be specified that Ai induces a stable set, a clique, or an arbitrary subgraph, and pairs Ai, Aj (i≠j) be completely nonadjacent, completely adjacent, or arbitrarily adjacent. The list k-partition problem generalizes the k-partition problem by specifying for each vertex x, a list L(x) of parts in which it is allowed to be placed. Many well-known graph problems can be formulated as list k-partition problems: e.g., 3-colorability, clique cutset, stable cutset, homogeneous set, skew partition, and 2-clique cutset. We classify, with the exception of two polynomially equivalent problems, each list 4-partition problem as either solvable in polynomial time or NP-complete. In doing so, we provide polynomial-time algorithms for many problems whose polynomial-time solvability was open, including the list 2-clique cutset problem. This also allows us to classify each list generalized 2-clique cutset problem and list generalized skew partition problem as solvable in polynomial time or NP-complete.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know