Variance Reduction in Wind Farm Layout Optimization
2019
- 168Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage168
- Downloads125
- Abstract Views43
Thesis / Dissertation Description
As demand for wind power continues to grow, it is becoming increasingly important to minimize the risk, characterized by the variance, that is associated with long-term power forecasts. This thesis investigated variance reduction in power forecasts from wind farm layout optimization.The problem was formulated as a multi-objective optimization one of maximizing mean-plant-power and minimizing variance. The ε−constraint method was used to solve the bi-objectiveproblem in a two-step optimization framework where two sequential optimizations are performed. The first is maximizing mean wind farm power alone and the second, minimizing variance with a constraint on the mean power which is the value from the first optimization. The results show that the variance in power estimates can be reduced by up to 30%, without sacrificing mean-plant-power for the different farm sizes and wind conditions studied. This reduction is attributed to the multi-modality of the design space which allows for unique solutions of high mean plant power at different power variances. Thus, wind farms can be designed to maximize power capture with greater confidence.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know