An Integrated, Fast and Easily Useable Software Toolbox Allowing Comparative and Complementary Application of Various Parameter Sensitivity Analysis Methods
2012
- 52Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage52
- Downloads44
- Abstract Views8
Artifact Description
The analysis of parameter sensitivity in environmental models is an excellent technique to assess a model’s behavior, to determine its potential utility, to support its calibration, and to identify areas of improvement. Recent work on comparing sensitivity analysis methods shows that the methods available today are complementary, i.e. multiple methods should be used to assess a model. We present a software toolbox for global sensitivity analysis which supports the investigation of parameter sensitivity using different methods. The toolbox includes Regional Sensitivity Analysis, Morris Method, and a Sobols method. The majority of these methods require input data from a Monte-Carlo- Sampling which has to be carried out in advance, others demand for special properties of the sampling. Therefore, in most cases, huge computational effort has to be spent to generate several sampling data. To overcome this deficit the data from a single Monte- Carlo-Sampling is used to train an Artificial Neural Network (ANN) which imitates the original model. By using this approach, arbitrary samplings can be easily drawn from the ANN-based emulator. This approach also gives an objective measure of the quality of the sampling itself and provides criteria on how many samples are required to get representative results. The sensitivity toolbox is part of the OPTAS module in the Jena Adaptable Modelling System. We will present the developed sensitivity analysis toolbox and examples of its application to the hydrological model J2000 in a catchment located in Germany. Special attention is paid to the emulation of the model with the newly developed ANN approach which produced very promising results.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know