Synthesis and electrochemical studies of novel ionic liquid based electrolytes
2015
- 1,894Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,894
- Downloads1,708
- 1,708
- Abstract Views186
Thesis / Dissertation Description
"Room temperature ionic liquids (RTILs) have received substantial interest as nonaqueous electrolytes in lithium ion- and metal-air batteries in recent years due to their low volatility, non-flammability, wide liquid range, and thermal stability characteristics. Towards developing a new generation of high specific energy lithium ion batteries, a series of imidazolium and pyrrolidinium based ionic liquids were synthesized and explored as nonaqueous electrolytes in lithium-, lithium ion-, and lithium-air batteries. Pyrrolidinium-TFSI based ionic liquids have wide electrochemical stability (5.7 - 6.2 V vs Li/Li+); however, they show limited thermal stabilities and lithium cell discharge characteristics. TFSI-based ionic liquids are thermally and electrochemically more stable when compared with their BF4-based analogues. A series of fluorinated ionic liquid electrolytes were synthesized and investigated for their use in lithium-air batteries. These ionic liquids have improved the diffusion coefficient and higher solubility of oxygen when compared with currently used nonaqueous electrolytes.Cathode materials, such as LiNi1/3Mn1/3Co1/3O2 and LiFePO4, were chemically delithiated using nitronium tetrafluoroborate (NO2BF4), or disodium peroxydisulfate (Na2S2O8>), to explore their effect on the oxidative degradation of the carbonate based electrolytes. Using fluoroethylene carbonate as the electrolyte additive, electrolyte degradation was monitored by 19F NMR spectroscopy. Formation of the solid electrolyte interface (SEI) on the delithiated cathode materials was probed using surface techniques, such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM)"--Abstract, page iii.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know