Reliability analysis for systems with outsourced components
2019
- 327Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage327
- Downloads231
- Abstract Views96
Thesis / Dissertation Description
"The current business model for many industrial firms is to function as system integrators, depending on numerous outsourced components from outside component suppliers. This practice has resulted in tremendous cost savings; it makes system reliability analysis, however, more challenging due to the limited component information available to system designers. The component information is often proprietary to component suppliers. Motivated by the need of system reliability prediction with outsourced components, this work aims to explore feasible ways to accurately predict the system reliability during the system design stage. Four methods are proposed. The first method reconstructs component reliability functions using limited reliability data with respect to component loads, and the system reliability is then estimated statistically. The second method applies two-class support vector machines (SVM) to approximate limit-state functions of outsourced components based on the categorical reliability dataset. With the integration of the obtained limit-state functions and those of in-house components, the joint probability density function of all the components is estimated, thereby leading to accurate system reliability prediction. The third method is an extension of the second one, and a one-class SVM is proposed to rebuild limit-state functions for outsourced components given only the failure dataset. The last method deals with the case where no reliability dataset is available. A partial safety factor method is developed, which enables component suppliers to provide sufficient information to system designers for accurate reliability analysis without revealing the proprietary design details. Both numerical examples and engineering applications demonstrate the accuracy and effectiveness of the proposed methods"--Abstract, page iv.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know