Multi-Stream Extended Kalman Filter Training of Neural Networks on a SIMD Parallel Machine
Intelligent Engineering Systems Through Artificial Neural Networks
1999
- 15Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage15
- Abstract Views15
Conference Paper Description
The extended Kalman filter (EKF) algorithm has been shown to be advantageous for neural network trainings. This paper presents a method to do the EFK training on a SIMB parallel machine. We use multi-stream decoupled extended Kalman filter (DEKF) training algorithm which can provide more improved trained network weights and efficient use of the parallel resource. The performance of the parallel DEKF training algorithm is studied and simulation results for the estimation of the wind power using neural networks are provided.
Bibliographic Details
American Society of Mechanical Engineers (ASME)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know