Effect of Inhomogeneous Medium on Fields above GCPW PCB for Near-Field Scanning Probe Calibration Application
IEEE Transactions on Electromagnetic Compatibility, ISSN: 1558-187X, Vol: 61, Issue: 1, Page: 3-10
2019
- 19Citations
- 20Usage
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- 19
- CrossRef11
- Usage20
- Abstract Views20
- Captures4
- Readers4
Article Description
In this paper, a method is proposed to calibrate a probe by placing it into a known field and referencing its output voltage to the known field. A transmission line is a convenient structure for creating such a known field. This paper presents the effect of the inhomogeneous medium on the near-field generated over a grounded coplanar waveguide (GCPW) printed circuit board (PCB) and reports the field pattern over the GCPW. GCPW PCBs are used to determine the probe factor for near-field scanning applications. A near-field scan is performed to visualize the near-field sources over a device under test (DUT). The near-field is measured by using E- and H-field electromagnetic interference probes. The output of these probes is a voltage and using the probe factor, the field present over the DUT can be determined. To calculate the probe factor, the near-field strength needs to be known using the 3-D simulation. GCPW creates a quasi-TEM field. The effect of non-TEM modes is easily underestimated, such that non-TEM fields prevent the user from determining the unwanted field suppression of probes at higher frequencies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85045300140&origin=inward; http://dx.doi.org/10.1109/temc.2018.2817119; https://ieeexplore.ieee.org/document/8334587/; https://scholarsmine.mst.edu/ele_comeng_facwork/3613; https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=4618&context=ele_comeng_facwork
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know