Evaluation of a New Real Time Personal Dust Meter for Engineering Studies on Mine Faces
Queensland Mining Industry Health and Safety Conference 2005
2005
- 24Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage24
- Abstract Views24
Conference Paper Description
An ACARP supported study has been undertaken to evaluate a new realtime personal dust meter using the tapered element oscillating microbalance (TEOM® system) for personal respirable dust evaluation use particularly in engineering studies. The evaluations is part of an international program of evaluation being undertaken by NIOSH in the US. It is believed to be the first personal dust monitor instrument (PDM) for use on mine faces that reliably delivers a near-real-time reading. It can quickly highlight high dust situations and allow the situation to be corrected. The technology that forms the heart of the PDM, the TEOM® system, is unique in its ability to collect suspended particles on a filter while simultaneously determining the accumulated mass. The monitor internally measures the true particle mass collected on its filter and results do not exhibit the same sensitivity to water spray as optically based measurement approaches. The technique achieves microgram level mass resolution even in the hostile mine environment, and reports dust loading data on a continuous basis. Using the device, miners and mine operators have the ability to view both the cumulative and projected end-of-shift mass concentration values, as well as a short-term 15 or 30 minute running average. It is believed to be the first personal dust monitor instrument that reliably delivers a near-real-time reading. The instrument has been tested for robustness and potential to be used as an engineering tool to evaluate the effectiveness of dust control strategies. This project has evaluated the ability of the new PDM to quickly and accurately measure changes to longwall dust levels at manned points after implementation of an improvement. This has been done at two Australian longwall underground mines. Results of the tests demonstrate the ability of the instrument to increase understanding of the respirable dust exposure levels faced at various underground manned points.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know