Switchgrass Root Decomposition Impacts on Soil Carbon Sequestration
2014
- 118Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage118
- Abstract Views118
Lecture / Presentation Description
The use of fossil fuels has many negative environmental consequences associated with it, including high carbon-dioxide (CO2) emissions. Carbon dioxide is a greenhouse gas, that contributes to global climate change. The negative impacts of fossil fuel use has led to increased interest in the development environmentally sustainable biofuels. Cellulosic-derived ethanol is one such biofuel, and the perennial prairie-grass Pancium virgatum L. (hereafter: switchgrass) has been identified as a viable ethanol source. Ethanol not only offers reduced emissions compared to fossil fuel use, but some ethanol crops, including switchgrass, may actively reduce atmospheric CO2 by sequestering carbon (C) in the soil, while not competing with food production. The plant characteristics that promote increased soil C sequestration are not currently well understood. Switchgrass cultivars display variable root morphologies, and we hypothesized that decomposition of different root types would impact soil C sequestration differently. Specifically, we predicted that decomposition of coarse root systems would lead to greater C stabilization than would the decomposition of fine root systems. In order to test this hypothesis, we decomposed either fine or coarse roots from 3 different switchgrass cultivars in soil microcosms for 60 or 120 days and then determined the amount and stability of the soil C. Our results support our hypothesis that coarse root decomposition leads to increased soil C sequestration.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know