Profiles of Temporal Thaw Depths Beneath Two Arctic Stream Types Using Ground-Penetrating Radar
Permafrost and Periglacial Processes
2006
- 23Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage23
- Abstract Views23
Article Description
Thaw depths beneath arctic streams may have significant impact on the seasonal development of hyporheic zone hydraulics. To investigate thaw progression over the 2004 summer season we acquired a series of ground-penetrating radar (GPR) profiles at five sites from May–September, using 100, 200 and 400 MHz antennas. We selected sites with the objective of including stream reaches that span a range of geomorphologic conditions on Alaska's North Slope. Thaw depths interpreted from GPR data were constrained by both recorded subsurface temperature profiles and by pressing a metal probe through the active layer to the point of refusal. We found that low-energy stream environments react much more slowly to seasonal solar input and maintain thaw thicknesses longer throughout the late season whereas thaw depths increase rapidly within high-energy streams at the beginning of the season and decrease over the late season period.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know