Cantilever-Based Optical Interfacial Force Microscopy
Molecular Interaction
2012
- 463Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage463
- Downloads430
- Abstract Views33
Book Description
Atomic force microscopy (AFM) is one of the most important tools that lead current nanoscience and nanotechnology in many diverse areas including physics, chemistry, material engineering, and nano-biology. The current AFM technique has been routinely applied to forced unbinding processes of biomolecular complexes such as antibody-antigen binding, ligand-receptor pairs, protein unfolding, DNA unbinding, and RNA unfolding studies (Butt et al., 2005; Fritz & Anselmetti, 1997; Schumakovitch et al., 2002). AFMs have also been applied to intermolecular friction studies (Carpick et al., 1997; Colchero et al., 1996; Fernandez-Torres et al., 2003; Goddenhenrich et al., 1994; Goertz et al., 2007; B.I. Kim et al., 2001; Major et al., 2006). These previous techniques of measuring friction employed a lateral modulation of the sample relative to the cantilever as a means to measure normal force and friction force at the same time (Burns et al., 1999a; Carpick et al., 1997; Colchero et al., 1996; Goddenhenrich et al., 1994; Goertz et al., 2007; Major et al., 2006).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know