Passive and Active Battery Balancing Methods Implemented on Second Use Lithium-ion Batteries
2020
- 666Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage666
- Abstract Views335
- Downloads331
Thesis / Dissertation Description
As the number of electric vehicles (EVs) increases, the number of used battery packs that require disposal increases; however, many of these packs still have useful capacity and can be repurposed. When using repurposed large lithium-ion battery packs, deviations between cells within a pack become problematic. These deviations result in a pack that is unbalanced, affecting performance and proving potentially hazardous when charging. Consequently, a battery management system (BMS) is needed. To provide safety, the BMS in this paper monitors and controls the operation of the battery pack. In addition, it controls the redistribution of charge between the cells within the pack, providing battery balancing and performance benefits. Two designs are prototyped and tested using repurposed battery packs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know