Lake Michigan Wind Assessment Analysis, 2012 and 2013
2017
- 318Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage318
- Downloads244
- Abstract Views74
Article Description
A study was conducted to address the wind energy potential over Lake Michigan to support a commercial wind farm. Lake Michigan is an inland sea in the upper mid-western United States. A laser wind sensor mounted on a floating platform was located at the mid-lake plateau in 2012 and about 10.5 kilometers from the eastern shoreline near Muskegon Michigan in 2013. Range gate heights for the laser wind sensor were centered at 75, 90, 105, 125, 150, and 175 meters. Wind speed and direction were measured once each second and aggregated into 10 minute averages. The two sample t-test and the paired-t method were used to perform the analysis. Average wind speed stopped increasing between 105 m and 150 m depending on location. Thus, the collected data is inconsistent with the idea that average wind speed increases with height. This result implies that measuring wind speed at wind turbine hub height is essential as opposed to using the wind energy power law to project the wind speed from lower heights. Average speed at the mid-lake plateau is no more that 10% greater than at the location near Muskegon. Thus, it may be possible to harvest much of the available wind energy at a lower height and closer to the shoreline than previously thought. At both locations, the predominate wind direction is from the south-southwest. The ability of the laser wind sensor to measure wind speed appears to be affected by a lack of particulate matter at greater heights.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know