LUNG CANCER TYPE CLASSIFICATION
2022
- 1,422Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,422
- Downloads1,077
- 1,077
- Abstract Views345
Project Description
Lung cancer is the third most common cancer in the U.S. This research focuses on classifying lung cancer cells based on their tumor cell, shape, and biological traits in images automatically obtained by passing through theconvolutional layers. Additionally, I classify whether the lung cell is adenocarcinoma, large cell carcinoma, squamous cell carcinoma, or normal cell carcinoma. The benefit of this classification is an accurate prognosis, leading to patients receiving proper therapy. The Lung Cancer CT(Computed Tomography) image dataset from Kaggle has been drawn with 1000 CT images of various types of lung cancer. Two state-of-the-art convolutional neural networks (CNNs) architectures, NFNets and EfficientNetB4, are trained, validated, and tested overCT-Scan images. The experiment analysis signifies that NFNets classifies lung cancer images with 96% accuracy and EfficientNetB4 with 94% accuracy in this study. With the increase in the size of the dataset, it is predicted that the accuracy will improve.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know