Heart Disease Prediction Using Binary Classification
2023
- 2,864Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2,864
- Downloads2,292
- 2,292
- Abstract Views572
Project Description
In this project, I built a neural network model to predict heard disease with binary classification technique using patient information dataset from UCI Machine Learning repository. This dataset was preprocessed to remove missing elements and performed feature extraction. Our result shows that the model that I built has the best performance accuracy in heart disease classification if compared to other models and algorithms. The model achieved 94.98% accuracy after hyperparameter tuning and 0.947 area under the curve in ROC curve analysis. In addition, to identify the most important factors in heart disease prediction, I also performed feature importance analysis. Our analysis showed that factors such as type of chest pain, peak heart rate, and exercise-induced ST-segment depression were among the strongest predictors of heart disease. Overall, the project demonstrated the effectiveness of neural network models in medical diagnosis and provided insights into heart disease classification. The model developed can be used as a decision support tool for healthcare professionals in planning the diagnosis and treatment of heart disease. However, further research is needed to confirm the model's performance in larger and more diverse patient populations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know