A SMART HYBRID ENHANCED RECOMMENDATION AND PERSONALIZATION ALGORITHM USING MACHINE LEARNING
2024
- 532Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage532
- Abstract Views320
- Downloads212
Project Description
In today’s age of streaming services, the effectiveness and precision of recommendation systems are crucial in improving user satisfaction. This project introduces the Smart Hybrid Enhanced Recommendation and Personalization Algorithm (SHERPA) a cutting-edge machine learning approach aimed at transforming how movie suggestions are made. By combining Term Frequency Inverse Document Frequency (TF-IDF) for content based filtering and Alternating Squares (ALS) with Weighted Regularization for filtering SHERPA offers a sophisticated method for delivering tailored recommendations.The algorithm underwent evaluation using a dataset that included over 50 million ratings from 480,000 Netflix users encompassing 17,000 movie titles. The performance of SHERPA was meticulously compared to traditional hybrid models demonstrating a 70% enhancement in prediction accuracy based on Root Mean Square Error (RMSE) metrics during training, testing and validation phases.These findings highlight SHERPAs capability to understand and cater to users’ subtle preferences representing an advancement in personalized recommendation systems.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know