Video Data Hiding for Managing Privacy Information in Surveillance Systems
2009
- 6Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage6
- Abstract Views6
Article Description
From copyright protection to error concealment, video data hiding has found usage in a great number of applications. In this work, we introduce the detailed framework of using data hiding for privacy information preservation in a video surveillance environment. To protect the privacy of individuals in a surveillance video, the images of selected individuals need to be erased, blurred, or re-rendered. Such video modifications, however, destroy the authenticity of the surveillance video. We propose a new rate-distortion-based compression-domain video data hiding algorithm for the purpose of storing that privacy information. Using this algorithm, we can safeguard the original video as we can reverse the modification process if proper authorization can be established. The proposed data hiding algorithm embeds the privacy information in optimal locations that minimize the perceptual distortion and bandwidth expansion due to the embedding of privacy data in the compressed domain. Both reversible and irreversible embedding techniques are considered within the proposed framework and extensive experiments are performed to demonstrate the effectiveness of the techniques.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know