Multi-step Prediction using Tree Generation for Reinforcement Learning
2022
- 286Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage286
- Downloads186
- Abstract Views100
Thesis / Dissertation Description
The goal of reinforcement learning is to learn a policy that maximizes a reward function. In some environments with complete information, search algorithms are highly useful in simulating action sequences in a game tree. However, in many practical environments, such effective search strategies are not applicable since their state transition information may not be available. This paper proposes a novel method to approximate a game tree that enables reinforcement learning to use search strategies even in incomplete information environments. With an approximated game tree, the agent predicts all possible states multiple steps into the future and evaluates the states to determine the best action sequences with the highest return. Our proposal differs from deep reinforcement learning in that it uses deep learning for not only the state evaluation but also game tree approximation. This allows it to perform better in completing complex tasks as well as learning in sparse reward environments.
Bibliographic Details
San Jose State University Library
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know