MINING CONCEPT IN BIG DATA
2015
- 401Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage401
- Downloads219
- Abstract Views182
Thesis / Dissertation Description
To fruitful using big data, data mining is necessary. There are two well-known methods, one is based on apriori principle, and the other one is based on FP-tree. In this project we explore a new approach that is based on simplicial complex, which is a combinatorial form of polyhedron used in algebraic topology. Our approach, similar to FP-tree, is top down, at the same time, it is based on apriori principle in geometric form, called closed condition in simplicial complex. Our method is almost 300 times faster than FP-growth on a real world database using a SJSU laptop. The database is provided by hospital of National Taiwan University. It has 65536 transactions and 1257 columns in bit form. Our major work is mining concepts from big text data; this project is the core engine of the concept based semantic search engine.
Bibliographic Details
https://scholarworks.sjsu.edu/etd_projects/411; https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1411&context=etd_projects&unstamped=1; http://dx.doi.org/10.31979/etd.6cnw-zngg; https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1411&context=etd_projects; https://dx.doi.org/10.31979/etd.6cnw-zngg; https://scholarworks.sjsu.edu/etd_projects/411/
San Jose State University Library
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know