Video Synthesis from the StyleGAN Latent Space
2020
- 3,256Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage3,256
- Downloads2,891
- 2,891
- Abstract Views365
Thesis / Dissertation Description
Generative models have shown impressive results in generating synthetic images. However, video synthesis is still difficult to achieve, even for these generative models. The best videos that generative models can currently create are a few seconds long, distorted, and low resolution. For this project, I propose and implement a model to synthesize videos at 1024x1024x32 resolution that include human facial expressions by using static images generated from a Generative Adversarial Network trained on the human facial images. To the best of my knowledge, this is the first work that generates realistic videos that are larger than 256x256 resolution from single starting images. This model improves the video synthesis in both quantitative and qualitative ways compared to two state-of-the-art models: TGAN and MocoGAN. In a quantitative comparison, this project reaches a best Average Content Distance (ACD) score of 0.167, as compared to 0.305 and 0.201 of TGAN and MocoGAN, respectively.
Bibliographic Details
https://scholarworks.sjsu.edu/etd_projects/924; https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1922&context=etd_projects&unstamped=1; http://dx.doi.org/10.31979/etd.ywry-3qps; https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1922&context=etd_projects; https://dx.doi.org/10.31979/etd.ywry-3qps; https://scholarworks.sjsu.edu/etd_projects/924/
San Jose State University Library
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know