Novel Extended Kalman Filter Using Matrix-Based Levenberg-Marquardt Algorithm and Its Application for Variable Bit-Rate Video Frame-Size Prediction
IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, BMSB, ISSN: 2155-5052, Vol: 2022-June, Page: 1-6
2022
- 1Citations
- 9Usage
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- Usage9
- Abstract Views9
- Captures2
- Readers2
Conference Paper Description
Dynamic bandwidth allocation based on multimedia network-traffic prediction has been emerging as an important problem in multimedia networks. The well-known Kalman filter has been adopted for such network-traffic prediction but it is assumed that the state-transition model is linear and known a priori. Therefore, it is favorable to extend the conventional linear state-transition model to be nonlinear and dynamically estimate it. It is not trivial to estimate such a nonlinear model especially for a multimedia network supporting the 5G technology and operating in a highly mobile environment. In this work, we would like to address the aforementioned challenges by designing a new matrix-based Levenberg-Marquardt algorithm based extended Kalman filter (MLMA-EKF) to dynamically estimate the video frame-sizes in compiance with MPEG-4 specifications. Numerical results over MPEG-4 encoded movies demonstrate that our proposed novel MLMA-EKF frame-size predictor is effective for predicting the future bit rates, or video frame-sizes, in terms of normalized mean square error (NMSE).
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135826981&origin=inward; http://dx.doi.org/10.1109/bmsb55706.2022.9828691; https://ieeexplore.ieee.org/document/9828691/; https://scholarworks.sjsu.edu/faculty_rsca/3651; https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=4650&context=faculty_rsca
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know