Nucleation-Free 3D Rigidity
2013
- 157Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage157
- Downloads114
- Abstract Views43
Article Description
When all non-edge distances of a graph realized in Rd as a bar-and-joint framework are generically implied by the bar (edge) lengths, the graph is said to be rigid in Rd. For d = 3, characterizing rigid graphs, determining implied non-edges and dependent edge sets remains an elusive, long-standing open problem.One obstacle is to determine when implied non-edges can exist without non-trivial rigid induced subgraphs, i.e., nucleations, and how to deal with them.In this paper, we give general inductive construction schemes and proof techniques to generate nucleation-free graphs (i.e., graphs without any nucleation) with implied non-edges. As a consequence, we obtain (a) dependent graphs in 3D that have no nucleation; and (b) 3D nucleation-free rigidity circuits, i.e., minimally dependent edge sets in d = 3. It additionally follows that true rigidity is strictly stronger than a tractable approximation to rigidity given by Sitharam and Zhou [16], based on an inductive combinatorial characterization.As an independently interesting byproduct, we obtain a new inductive construction for independent graphs in 3D. Currently, very few such inductive constructions are known, in contrast to 2D.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know