Minimizing the Potential for Groundwater Contamination from Agricultural Point Sources
1989
- 79Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage79
- Downloads68
- Abstract Views11
Report Description
An activated charcoal filtration unit was designed to remove pesticides from leftover pesticide solutions and rinsates generated under farm-like conditions. The system, fabricated for less than $1400 using readily available components, effectively removed the pesticides atrazine, benomyl, carbaryl, fluometuron, metolachlor, and trifluralin from wastewater generated on the University of Arkansas Agronomy Farm located in Fayetteville, AR. A total of 2253 L of wastewater were treated using the system. Of these 1768 L were generated from washing out the spray tank (rinsates) while 485 L stemmed from leftover pesticide solutions that were mixed, but not applied. Typical initial pesticide concentrations in the wastewater were on the order of 500 to 1000 parts per million (ppm). The final pesticide concentrations remaining after charcoal filtration were generally less than 10 ppm. Approximately 1514 L of wastewater was treated with 23 kg of charcoal before the charcoal was replaced. This resulted in an estimated pesticide loading rate on the charcoal of 0.05 to 0.10 kg pesticide active ingredient per kg activated charcoal. Incubation of alachlor-treated charcoal with a mixed culture of microorganisms resulted in approximately a 30% loss of alachlor after 21 d. These results suggest that on-site degradation of spent charcoal may be a feasible alternative to incineration, however more research is needed to fully determine its potential. A reduced adsorption of methylene blue dye with increasing amounts of trifluralin sorbed to charcoal occurred. Activated charcoal treated with 222 mg/g trifluralin sorbed only 19% of the amount sorbed by the control with no trifluralin present. These results suggest that methylene blue or other dyes might be used to indicate the remaining adsorptive capacity of a charcoal used for removing pesticides from wastewater.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know