Learning-based Analysis on the Exploitability of Security Vulnerabilities
2018
- 484Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage484
- Downloads390
- Abstract Views94
Thesis / Dissertation Description
The purpose of this thesis is to develop a tool that uses machine learning techniques to make predictions about whether or not a given vulnerability will be exploited. Such a tool could help organizations such as electric utilities to prioritize their security patching operations. Three different models, based on a deep neural network, a random forest, and a support vector machine respectively, are designed and implemented. Training data for these models is compiled from a variety of sources, including the National Vulnerability Database published by NIST and the Exploit Database published by Offensive Security. Extensive experiments are conducted, including testing the accuracy of each model, dynamically training the models on a rolling window of training data, and filtering the training data by various features. Of the chosen models, the deep neural network and the support vector machine show the highest accuracy (approximately 94% and 93%, respectively), and could be developed by future researchers into an effective tool for vulnerability analysis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know