Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies
2016
- 458Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage458
- Downloads402
- Abstract Views56
Thesis / Dissertation Description
Radar studies of the surface of Venus have identified regions with high radar reflectivity concentrated in the Venusian highlands: between 2.5 and 4.75 km above a planetary radius of 6051 km, though it varies with latitude. Previous research has proposed several theories on the source of these anomalies, including increased surface roughness, metallic materials with higher dielectric constants, or ferroelectric materials. Prior work suggests several processes that could be the origin of these anomalies, such as surface-atmospheric interactions or low lying clouds or fog. Alternatively, these anomalies could result from a semi-metallic compound trapped at the cooler conditions in the highlands, likely forming as a snow or frost. If this were the case, the compound would be expected to precipitate out of a low cloud layer.While theoretical studies have been beneficial towards determining the source of these anomalies, few experimental investigations have been done to validate these theories. In this dissertation, several minerals, chosen by their likely presence on Venus, were investigated to determine their stability under Venusian conditions, including temperature, pressure and atmospheric composition. Analysis of the empirical data enabled the identification of potential mineral source(s) of the radar-bright anomalies.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know