A Generative Statistical Approach for Data Classification in a Biologically Inspired Design Tool
2018
- 160Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage160
- Downloads113
- Abstract Views47
Thesis / Dissertation Description
The objective of the research this thesis describes is to find a way to classify text-based descriptions of biological adaption to support Biologically Inspired design. Biologically inspired design is a fairly new field with ongoing research. There are different tools to assist designers and biologists in bio-inspired design. Some of the most common are BioTRIZ and AskNature. In recent years, more tools have been proposed to aid and make research in the field easier, for example, the Biologically Inspired Adaptive System Design (BIASD) tool. This tool was designed with the goal of helping designers in early design stages generate more robust and innovative designs. Even though this tool offers a vast database of biological examples, many limitations have been encountered in the tool. The most noticeable is the order in which the biological examples are distributed within the tool. The process used to classify them was very subjective and does not follow a pattern. Another challenge is the way in which the user of the tool reaches the biological examples. By addressing these issues, we provide a more objective way to classify the biological adaptive strategies. To do this, we needed a meta classification in order for the questions to be rationally organized within the tool. Then, approaches such as k-means and Latent Dirichlet Allocation (LDA) techniques from machine learning were employed to minimize the randomness and increase the objectivity of the tool. Out of the two, the LDA model provided a more useful classification. A validation of the LDA model was needed, so we used perplexity, which is used in statistical models to measure the accuracy of a language model and better understand datasets. At the end, a rational classification for the analogues of the BIASD tool was generated.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know