Spatio-Temporal Reconstruction of Remote Sensing Observations
2018
- 398Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage398
- Downloads329
- Abstract Views69
Thesis / Dissertation Description
The USDA Forest Service aims to use satellite imagery for monitoring and predicting changes in forest conditions over time within the country. We specifically focus on a 230, 400 hectares region in north-central Wisconsin between 2003 - 2012. The auxiliary data collected from the satellite imagery of this region are relatively dense in space and time and can be used to efficiently predict how the forest condition changed over that decade. However, these records have a significant proportion of missing values due to weather conditions and system failures. To fill in these missing values, we build spaciotemporal models based on fixed effect periodic patterns, spatial random effects with conditional autoregressive prior and a first-order autoregressive temporal effect. Multiple validation and comparison diagnostics are run to identify the best performing model for each of the auxiliary variables as well as for basal area. Findings from our analysis are represented with a series of maps followed by a discussion of their agreement with known spatial patterns across the landscape.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know