Distortion-Tolerant Communications with Correlated Information
2013
- 93Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage93
- Downloads71
- Abstract Views22
Thesis / Dissertation Description
This dissertation is devoted to the development of distortion-tolerant communication techniques by exploiting the spatial and/or temporal correlation in a broad range of wireless communication systems under various system configurations. Signals observed in wireless communication systems are often correlated in the spatial and/or temporal domains, and the correlation can be used to facilitate system designs and to improve system performance. First, the optimumnode density, i.e., the optimum number of nodes in a unit area, is identified by utilizing the spatial data correlation in the one- and two-dimensional wireless sensor networks (WSNs), under theconstraint of fixed power per unit area. The WSNs distortion is quantized as the mean square error between the original and the reconstructed signals. Then we extend the analysis into WSNs with spatial-temporally correlated data. The optimum sampling in the space and time domainsis derived. The analytical optimum results can provide insights and guidelines on the design of practical WSNs. Second, distributed source coding schemes are developed by exploiting the data correlation in a wireless network with spatially distributed sources. A new symmetric distributed joint source-channel coding scheme (DJSCC) is proposed by utilizing the spatial source correlation. Then the DJSCC code is applied to spatial-temporally correlated sources. The temporalcorrelated data is modeled as the Markov chain. Correspondingly, two decoding algorithms are proposed. The first multi-codeword message passing algorithm (MCMP) is designed for spatially correlated memoryless sources. In the second algorithm, a hidden Markov decoding process is added to the MCMP decoder to effectively exploit the data correlation in both the space and time domains. Third, we develop distortion-tolerant high mobility wireless communication systems byconsidering correlated channel state information (CSI) in the time domain, and study the optimum designs with imperfect CSI. The pilot-assisted channel estimation mean square error is expressedas a closed-form expression of various system parameters through asymptotic analysis. Based on the statistical properties of the channel estimation error, we quantify the impacts of imperfect CSI on system performance by developing the analytical symbol error rate and a spectral efficiency lower bound of the communication system.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know