Geometry of Protein Structures. I. Why Hyperbolic Surfaces are a Good Approximation for Beta-Sheets
2004
- 217Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage217
- Downloads162
- Abstract Views55
Article Description
Protein structure is invariably connected to protein function. To analyze the structural changes of proteins, we should have a good description of basic geometry of proteins' secondary structure. A beta-sheet is one of important elements of protein secondary structure that is formed by several fragments of the protein that form a surface-like feature. The actual shapes of the beta-sheets can be very complicated, so we would like to approximate them by simpler geometrical shapes from an approximating family. Which family should we choose? Traditionally, hyperbolic (second order) surfaces have been used as a reasonable approximation to the shape of beta-sheets. In this paper, we show that, under reasonable assumptions, these second order surfaces are indeed the best approximating family for beta-sheets.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know