Extracting Computable Bounds (and Algorithms) from Classical Existence Proofs: Girard Domains Enable Us to Go Beyond Local Compactness
2008
- 88Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage88
- Downloads69
- Abstract Views19
Article Description
In classical mathematics, the existence of a solution is often proven indirectly, non-constructively, without an efficient method for constructing the corresponding object. In many cases, we can extract an algorithm from a classical proof: e.g., when an object is (non-constructively) proven to be unique in a locally compact space (or when there are two such objects with a known lower bound on the distance between them). In many other practical situations, a (seemingly) natural formalization of the corresponding practical problem leads to a non-compact set. In this paper, we show that often, in such situations, we can extract efficient algorithms from classical proofs -- if we explicitly take into account (implicit) knowledge about the situation. Specifically, we show that if we consistently apply Heisenberg's operationalism idea and define objects in terms of directly measurable quantities, then we get a Girard-domain type representation in which a natural topology is, in effect, compact -- and thus, uniqueness implies computability.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know